These tables list all of the drinking water contaminants that were *detected* during the most recent sampling for each constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Resources Control Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked and explained below.

TABLE 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA								
Microbiological Highest No. of Contaminants Highest No. of Mo. of months detections in violation				MCLG	Typical Source of Bacteria			
E. coli	(in the year) 0	0	(a)	0	Human and animal fecal waste			

) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive, or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER

Lead and Copper	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	No. of schools requesting lead sampling	Typical Source of Contaminant
Lead (ppb) 2023	5	1.03	None	15	0.2	None	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm) 2023	5	0.25	None	1.3	0.3	Not Applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Indian Valley CSD – Crescent Mills is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

TABLE 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS						
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	12/10/19	10.3		none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	12/10/19	115		none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

TABLE 4 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Nitrate (ppm)	10/05/23	0.1	ND - 0.2	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Arsenic (ppb)	2023	0.7	ND - 2.6	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
TTHMs [Total Trihalomethanes] (ppb)	08/31/23	4.2		80	N/A	Byproduct of drinking water disinfection

TABLE 5 - DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant	
Iron	2023	2358*	ND - 8930	300	none	Leaching from natural deposits; industrial wastes	
Sulfate (ppm)	10/13/20	7.6		500	none	Runoff/leaching from natural deposits; industrial wastes	
Total Dissolved Solids (ppm)	10/13/20	151		1000	none	Runoff/leaching from natural deposits	
Specific Conductance (µS/cm)	10/13/20	242		1600	none	Substances that form ions when in water; seawater influence	
Color (units)	11/07/17	10		15	none	Naturally occurring organic materials	
Turbidity (units)	11/07/17	6.2*		5	none	Soil runoff	

^{*} There are no PHGs, MCLGs, or mandatory standard health effects language for these constituents because secondary MCLs are set on the basis of aesthetics.